
Theo Zimmermann

Description of a genome assembler: CABOG

CABOG (Celera Assembler with the Best Overlap Graph) is an assembler built upon the
Celera Assembler, which, at first, was designed for Sanger sequencing, but it was revised
to handle medium-length sequencing produced with the 454 sequencing machines (Miller
et al., 2008). It is scientifically more interesting than its competitor Newbler because it is
distributed as a free software and more information is available on its algorithm.

Sanger chemistry produces long reads, with high accuracy. Next-generation sequencing
produces short reads, with higher error rate but high coverage. New software have been
devised for this type of sequencing. The software CABOG uses a hybrid approach and is
more robust to homopolymer (single-letter) read length uncertainty, varying read length
and higher error rate. It has been designed
in particular to take advantage of paired-end
mate information. It accepts “pyrodata”
alone or in a combination with Sanger data.

CABOG belongs to the class of
Overlap/Layout/Consensus assemblers,
which are basically looking for Hamiltonian
paths. It extends these three steps by
computing first unitigs from pairwise
overlaps, then contigs, then scaffolds and by
combining them with multiple sequences
alignment techniques, during the consensus
phase (Miller, Koren, & Sutton, 2010).
Unitigs are uncontested contigs (largest
brick the assembler constructs with
certainty). Contigs are MSA without gaps
and scaffolds contain gaps. They are
combined using, in particular, the paired-
end information.

Compared to the initial technique for Sanger
data, some modules of the Celera Assembler
have been reused, or improved by
considerations orthogonal to the problem of
next-generation sequencing. It is the case of
modules to handle scaffolds because they
are large enough to be no different with
next-generation sequencing from what they
used to be with Sanger data. The orthogonal
improvements will not be described here.

The Celera assembler

Let's describe more precisely the general algorithm behind the Celera Assembler, at the
basis of CABOG.

According to (Miller et al., 2010), all OLC assemblers are built on the following schema:

• The first phase is the discovery of overlaps. It relies upon pairwise comparison of
reads and to speed the process, the common heuristic is to use seeds which are k-
mers. Details and specificities of CABOG in the domain are explained later.

• The second phase is to build an approximate layout of the whole genome by using
the resulting graph from the first phase.

• The third and last phase uses multiple sequence alignment to place all reads on the
approximate layout. During this phase, a consensus sequence for the whole
genome is determined.

The Celera assembler reproduce these steps several time during the process (Miller et al.,
2008):

• Overlap detection;

• Combination of reads into unitigs;

• Consensus sequence for each unitig;

• Combination of unitigs into contigs and scaffolds;

• Consensus sequence for the scaffolds (i.e., the whole genome if the number of
scaffolds corresponds to the number of chromosomes).

Definitions: (Myers, 2000) gives precise definitions of the different terms:

• A unitig is “a maximal interval subgraph of the graph of all fragment overlaps for
which there is no conflicting overlaps to an interior vertex”. Almost every unitig
is correct. The only exception is when very similar repeats are collapsed into a
single unitig but they came from different positions.

• A contig is “a series of overlapping unitigs”.

• A scaffold is a set of contigs which are “ordered, oriented, positioned with respect
to each other by mate pairs whose reads are in adjacent contigs” so that the
distance between two successive contigs is approximately known.

Only the first two steps have been modified in CABOG compared to what was done in
the Celera assembler. Indeed, the authors of the assembler determined that these phases
were at the origin of most of the problems induced by hybrid data. Most of the changes
will be done to make the two phases less specific to Sanger data, by replacing the costly
process they used. Also some correction heuristics were too often triggered when using
short and repetitive reads so they were removed.

Overlap detection

Because it has been observed that errors are more frequent toward the end of a read and it
may prevent true overlaps from being detected, a trimming step removes the end of the
longest reads if an overlap has been detected that does not span the end.

A question to discuss: would this step be useless in a method using only k-mers because
k-mers would already induce trimmed reads? Also, we can remark that this trimming
phase creates a bias toward finding more overlaps, because this is the only case when it
applies, whereas k-mer splitting is unbiased because applied uniformally. Nevertheless,
some Eulerian methods also trim the reads.

The algorithm for overlap detection first looks for seeds for overlap in terms of short
exact matches on compressed sequences. Seeds are k-mers of a predefined length (k = 22
by default). k-mers which are too frequent are excluded. The homopolymers are reduced
to only one instance of the letter in the compressed format because it is one of the most
common error of sequencers to miscalculate the length of a homopolymer. All reads that
share sufficiently many k-mers are considered. Then, the uncompressed version is
considered to determine if there actually is overlap but this time, it does not need to
match exactly (to be robust to substitution errors or other small read errors). The overlaps
require to be 94% accurate on a length of 40bp at least. Note how these defaults values
are suited for 454 data but might be too big for Illumina data.

Unitigs

The assembler is said to use “best overlaps” because it builds unitigs in a greedy fashion
(choosing at each time, the next best overlapping read). This method may create errors
which are hopefully corrected later but it has not the problems of the former heuristic s the
Celera assembler used which were very sensitive to repeats of length longer than a read.
Moreover, it is a linear-time method. In more details, a multigraph is constructed where
nodes represent each end of a read, undirected edges link two nodes and represent reads
and directed edges represent best overlaps (“best is defined as aligning the most bases”
(Miller et al., 2010)). If there is no error, best overlaps must be “mutual” it means that if
the end of a read is the best overlap for one end of another read then the relation is
reciprocal (the directed edges exist in both ways).

After breaking arbitrarily potential cycles, for each path in the graph, a unitig is built by
selecting one (best-scoring) read and following its two ends and the best overlaps until it
reaches the path end or a read which is already in another unitig. Unitigs are then broken
again at most intersections where there would have been several possibilities for
constructing the unitig. These intersections correspond to repeats or noise (for instance,
spurs which are error-prone ends of reads) that make their analysis more complicated.
CABOG tries to break unitigs only at intersections which correspond to noise. Unitigs are
also broken when a mate-pair constraint is violated.

The rest of the assembler is similar to what the Celera assembler did for Sanger data. In
particular, scaffolding use again mate-pair constraints.

Scaffolds

Mate-pairs are very important for the Celera assembler. They were already used to split
suspicious unitigs in the previous phase, but they really become necessary for the contigs
construction and scaffolding phases. A mate-pair which has one end in one unitig and one
end in another unitig is useful to orient and position the two. To reach a level of near
certainty, at least two such mate-pairs are necessary. Consequently, the Celera assembler
will first use bundles of mate-pairs to combine unitigs into contigs. At this point, contigs
contain a very low number of errors. Then, to finish the construction of contigs, more
aggressive and less reliable steps are followed: unitigs (rocks) are positioned if there are
mate-pairs which consistently place them with respect to other unitigs; a unitig (stone) is
positioned if there is one mate-pair and a consistent tiling of overlapping unitigs which
place it with respect to the same given unitig; the last step attempts to fill the gaps with
the best possible tiling of overlapping unitigs (pebbles). (Myers, 2000) provides the level
of certainty of each of the steps.

The ordering and positioning of contigs to form scaffolds is not a separate step from the
contigs construction. In fact, when unitigs are linked by a bundle of mate-pairs but there
remains a gap at the end of the scaffolding process, then we have got a scaffold and not a
simple contig. The gaps will only be filled during the consensus phase, when reads are
aligned to the layout.

Consensus

During the last step, every read is aligned with respect to the approximate layout and
some pebbles can still be moved during this stage. A consensus genome is computed.

Results

According to the GAGE study which was conducted on Illumina data (Salzberg et al.,
2012), CABOG is among the best performing assemblers. It gives reasonable-sized
contigs and scaffolds with a limited amount of errors. This is surprisingly enough because
CABOG was not designed for Illumina data. But changing the parameters might be
enough to tune it for a different kind of data. And I am not aware of the possible
improvements the authors of CABOG have done between 2008 and 2012.

The evaluation on a human chromosome which was conducted in the study is of
particular interest. CABOG and AllPaths-LG were the two best performing assemblers.
But the study conclude that all assemblers are still very rudimentary with human data. So
Hamiltonian and Eulerian assemblers perform equally well. But next-generation data is
not good enough yet for human-scale genomic assembly. One idea to improve it would be
to provide more mate-pairs.

Conclusion

This assembler is interesting because it can target hybrid data, produced with Sanger
sequencers and next-generation sequencers. It was designed by modifying the parts of the
algorithm that were not working well with pyrodata. Essentially, it seems that the
algorithm has been simplified, heuristics have been removed... The greedy construction
of the overlap graph makes it computationally tractable, but at the cost of more errors.
Also, even if it is not clear what exactly makes the assembler better for handling hybrid
data, my guess is that it just comes from the fact CABOG was designed in a non-specific
way to one particular kind of data.

Credits

All the pictures have been reproduced from (Myers, 2000).

Bibliography

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A., … Sutton,
G. (2008). Aggressive assembly of pyrosequencing reads with mates. Bioinformatics
(Oxford, England), 24(24), 2818–24. doi:10.1093/bioinformatics/btn548

Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation
sequencing data. Genomics. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0888754310000492

Myers, E. W. (2000). A Whole-Genome Assembly of Drosophila. Science, 287(5461),
2196–2204. doi:10.1126/science.287.5461.2196

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., … Yorke, J.
a. (2012). GAGE: A critical evaluation of genome assemblies and assembly
algorithms. Genome research, 22(3), 557–67. doi:10.1101/gr.131383.111

	The Celera assembler
	Overlap detection
	Unitigs
	Scaffolds
	Consensus
	Results
	Conclusion
	Credits
	Bibliography

