
Boosting BAli-Phy with UPP

Cécile Rottner, Théo Zimmermann, (Nam Nguyen, Tandy Warnow)

December 1, 2013

1 Introduction

The estimation of a phylogeny is always a tremendous project which involves
a lot of different technical and scientific skills both in biology and in com-
puter science. It follows the general schema: collection of data, in particular
DNA extraction and sequencing, multiple sequence alignment, tree or net-
work reconstruction. Each of these steps is equally important and for the
last two ones, increasingly efficient new algorithms have been devised.

Various alignment software are in use today, each presenting specific ad-
vantages. BAli-Phy is a Bayesian software which does simultaneously the
sequence alignment and the tree estimation. Its advantages are that it in-
cludes different and realistic models of evolution, accounting for indels and
substitution; it is not biased by the use of a guide tree; it takes uncertainty
into account [8]. In a study from some years ago comparing (among others)
SATé and BAli-Phy, there were models on which BAli-Phy created better
alignments [2]. Unfortunately, Bayesian methods are very slow and conse-
quently, the size of datasets they can address is extremely limited.

The current challenge is to address larger and larger datasets. This chal-
lenge threatens Bayesian methods to become useless. Fortunately, some of
the new algorithmic techniques that have been devised to address those ultra-
large datasets are adaptable. Some software rely on interesting mathematical
tricks to leverage the capacity of a basic multiple alignment software. This is
the case of two software that have been developed at the University of Texas
at Austin: PASTA [4] and UPP [6]. Both rely on a core brick which is a
multiple sequence aligner that can be replaced.

PASTA uses a divide-and-conquer approach where only the base case
requires the core aligner. Consequently, even a slow aligner like BAli-Phy
can be used and run in parallel to compute these preliminary alignments.

UPP proposes an even more powerful leverage because it only asks the
core brick to align a backbone of randomly selected sequences. With a back-

1



bone of size 100 and the help of Hidden Markov Models (HMMER), it can
then compute with very high accuracy multiple sequence alignments up to a
million sequences [6].

Until now, the core brick of PASTA has been MAFFT-linsi [1] and the
core brick of UPP has been SATé. However, these two aligners can be re-
placed by others fairly easily.

In this article, we show that it is possible and quite simple to leverage
BAli-Phy using UPP. Our boosted version was able to tackle datasets of size
10,000 with very high accuracy. Consequently, this article is the first serious
step on the path of Bayesian methods towards handling ultra-large datasets.

2 Results

UPP is often run with backbones of varying sizes between 10 and 100. A
first step was to determine which size of backbone would be good for UPP
with BAli-Phy.

We worked first with RNAsim, a model containing 10,000 sequences of
length 1,000 which were generated from a simulation (see section 6). To
chose the good size of backbone we first ran the original UPP (with SATé)
to give us an idea of what was enough to get a good accuracy. Results with a
backbone of size 10 were not very good so we were planning to test backbones
of size 20 and 50.

We ran BAli-Phy on backbones of size 20 but it took around a week
on machines with 24Go of RAM to reach the convergence (after more than
20,000 iterations). Given the way the cluster is built we do not really know
what CPU speed the machines we used had but it is probably around 2.4GHz
with 4 cores.

Given that it took already so much time to reach the convergence on
subsets of size 20, we postponed the idea of testing larger backbones. It
appears than the limiting factor was the runtime and it was probably due,
in particular, to the length of the sequences. Indeed, the authors say that
for sequences of length above 1,000, the use of BAli-Phy becomes more and
more difficult.

Thus, an idea if we want to test larger backbones would be to shorten the
sequences. For instance, we can extract shorter sequences from our previous
model.

As said before, we observed that we needed at least 20,000 iterations to
reach a good level of convergence.

Once we reached the convergence (see section 6 for details about how it
is measured), we asked BAli-Phy to summarize its output. It computed an

2



UPP with BAli-Phy UPP with SATé
SPFN 0.1291 0.1396
SPFP 0.0958 0.1115

Figure 1: False positive and false negative rates for output alignments

BAli-Phy
SPFN 0.0871
SPFP 0.0870

Figure 2: False positive and false negative rates for backbone alignments

estimate of the backbone alignment using maximum posterior decoding and
it computed the majority consensus topology tree. We ran UPP(20,20) (i.e.
with no decomposition) with the backbone alignment and tree computed
with BAli-Phy. UPP uses the backbone to compute alignments for the whole
set of sequences.

What is extremely powerful in UPP is the fact that it only takes a couple
of minutes on any standard machine to compute the alignment for 10,000
sequences. It only requires the aligned backbone BAli-Phy had taken more
than one week to compute.

We measured the SPFN and SPFP rates of our output with respect to the
true alignment. We also ran UPP with SATé and with the same parameters
otherwise. We give in Figure 1 a comparison of the SPFN and SPFP rates
in the two cases. We have slightly better results with UPP/BAli-Phy.

We also measured the SPFN and SPFP for the backbone alignments given
by BAli-Phy, in Figure 2. In particular, we wanted to know how much of
error UPP added by scaling up from the backbone to the full dataset. Given
these figures, we can conclude that it does not add much error.

We also computed the trees on each of the two alignments (one by UPP
with BAli-Phy, another by UPP with SATé) using FastTree [7], and calcu-
lated the tree error of each of these trees with respect to the true tree. The
results are displayed in Figure 3. The error we get on the tree is also better
for UPP/BAli-Phy. The calculation of the tree error using the alignment
trees computed by RAxML [9] (instead of FastTree) will probably yield sim-
ilar results (it has run for 16 days and it is still running). Here, the tree were
constructed on masked alignments. We get a higher tree error when trees
are computed from unmasked alignments (around 0.17 - 0.18).

We were interested in computing several trees on the backbone alignment

3



UPP with BAli-Phy UPP with SATé
Tree error (FastTree, masked alignments) 0.1337 0.1377

Tree error (RaxML) ... ...

Figure 3: Tree errors for phylogenic tree on the output alignments

BAli-Phy
Output tree (c50) 0.1765

FastTree tree 0.1765
RaxML tree 0.1765

Figure 4: Tree errors for phylogenic tree on the backbone alignments

and comparing their errors so that we could know if we were right to chose
the majority consensus tree produced by BAli-Phy as an input to UPP. BAli-
Phy produces various output trees: c50 (majority topology), but also c66,
c80, c90 (more restrictive consensus).

We computed the tree error for various trees: the output tree c50 of BAli-
Phy, a tree computed with FastTree given the output alignment of BAli-Phy,
a tree computed with RaxML given the same input. All these trees are
almost fully resolved so the SPFN, SPFP and RF distance error have the
same values, shown in Figure 4. These errors are higher than previously
since there was no masked alignment produced that we could use (the masked
alignment is something specific to UPP). It is however interesting to notice
that the tree error on the backbone aligned by BAli-Phy is the same, whatever
tree construction method we choose.

Also, we chose to use c50 (one of the output tree of BAli-Phy) in our
comparison because it is fully resolved, but another output tree of BAli-Phy
is interesting: c80, which has a FP rate of 0.0714, a FN rate of 0.2373 and a
RF error of 0.1533 (the other trees yield very high errors). We tried to run
UPP with the tree c80 as an input, and we got similar SPFP (0.1292) and
SPFN (0.0957), compared to UPP run with c50 (Figure 1).

3 Discussion

UPP allows us to leverage BAli-Phy to handle a very large number of se-
quences. It does not help with respect to sequences length. Unfortunately,
BAli-Phy uses quadratic runtime and memory in terms of the sequences
length. Consequently, this is another limitation of Bayesian software that

4



our approach was not designed to tackle and which will require more re-
search before Bayesian software can be uplifted to the same levels as their
competitors today.

Since we tried to tackle sequences of length 1,000, it seems possible that,
for shorter sequences, the effect would have been even more impressive. In
particular, if one wanted to boost BAli-Phy using PASTA, our advice would
be to start with sequences of shorter length.

We were concerned about the speed with which BAli-Phy iterates but it
was difficult to measure. We were first able to get 1,500 iterations in less than
4 hours on standard cluster machines, 19 sequences whose length was around
1,700 when correctly aligned but around 900 when we removed indels. We
have to compare that to the 10 hours on powerful machines we needed to
reach the first 1,500 iterations for 20 sequences of length 1,000 when testing
RNAsim. The main difference was the model so it probably shows that the
model has a big impact on the speed of BAli-Phy.

4 Future Work

BAli-Phy is designed to output different alignments and trees. If we tested
the various output trees produced by BAli-Phy, we only managed to get one
kind of alignment (the one we used in our work). Thus, we will next try to
get those other alignments and assess which ones are best for our analysis.

Our boosted version of BAli-Phy is apparently able to handle large datasets
(up to 10,000 taxa) but this needs to be confirmed by more results. We
would like to compute new alignments with UPP/Bali-Phy on replicates of
the dataset we used. We tried to run new replicates but we encountered many
technical difficulties, so no more replicates are running for the moment. Also,
since BAli-Phy is really slow to run, we will try other dataset models with
a slower rate of evolution (like the 1000-taxa dataset used in SATé, or some
Gutell datasets), since this could help BAli-Phy to run a little bit faster.
Once this is done, we could test UPP/BAli-Phy on real-world datasets.

Then, there are some directions in which we would like to go afterwards:

1. testing UPP/Bali-Phy with a backbone decomposition (with for exam-
ple UPP(20,10)) on datasets such as RNASim or 16SBAl.

2. testing UPP/BAli-Phy with a larger backbone (for example of size 50),
aligned with BAli-Phy boosted with PASTA.

5



5 Conclusion

Our work proves that it is possible to leverage a widely-used Bayesian method
to handle very large datasets for MSA. Moreover, we proved the interest of
using BAli-Phy rather than SATé on some datasets.

A first remark will be to remind that this advantage is in terms of accuracy
but definitely not in terms of running time. Indeed, BAli-Phy took more than
a week where SATé was done in a few hours.

Besides, we do not take advantage of all the properties of BAli-Phy. BAli-
Phy generates trees and alignments that we use for the backbone. But when
we compute the final tree given the alignments we computed for the whole
set of sequences, we use our own method to do it (FastTree or RAxML). It
does not mean that the advantage that BAli-Phy does join estimation of the
tree and the alignment is lost but simply that it is not used at the end of
the process. Another advantage of BAli-Phy is that it constructs the tree
from all the possible alignments and not from a consensus alignment. We
lose this advantage at the last step of our construction but it was still useful
for constructing the backbone alignment.

It would be interesting to see if there is a way to adapt divide-and-conquer
approaches, such as DACTAL [5], to a software like BAli-Phy in order to
never lose those interesting properties.

6 Methods

We give here full details about our experiments so that it will be very easy
for anyone to replicate. All the software and datasets we used are available
online for free. We give the details on where to find them.

The initial RNAsim datasets can be downloaded from

http://kim.bio.upenn.edu/software/csd.shtml

Our 10,000 taxa dataset was randomly subsampled from the 1 million
taxa dataset at this address.

We ran BAli-Phy with the following command:

bali-phy - -randomize-alignment backbone.fas

We used a cluster to run 10 MCMC in parallel. 10 is the recommended
number by the authors of BAli-Phy.

Contrary to what is explained in [3], we did not experienced any problem
with BAli-Phy memory usage. In fact, we did not even needed the large

6



amount of memory the machines we used provided but we used them because
they were also conveniently powerful machines.

To measure convergence we primarily used the command

trees-bootstrap directory-1/C1.trees directory-2/C1.trees · · ·
directory-n/C1.trees > partitions.bs

to calculate the ASDSF value, which is suggested in the Users manual
of BAli-Phy. Some other statistics are also proposed and everything can be
summarized, when we are confident enough that we reached the end, by using

bp-analyze.pl directory-1/ directory-2/ · · ·

All these values are computed by comparing several MCMCs.
We waited until we had reached the recommended value for the different

statistics. In particular, our main criterion, the ASDSF value, had to pass
under the bar of 0.01. When we waited for this parameter to converge, we
observed that using a subset of all the MCMCs we had could help lower the
value, especially by removing chains which had done a very different number
of iterations (a lower number or even a larger one). We did not entirely
understood this strange observation.

BAli-Phy can be downloaded from

http://faculty.biomath.ucla.edu/msuchard/bali-phy/

and the Users manual is available at

http://faculty.biomath.ucla.edu/msuchard/bali-phy/README.html

We ran UPP with the command

python bin/exhaustive upp.py -t c50.tree -a P1-max.fasta

-A 20 -s query.fas -o upp 20 20

c50.tree is the majority consensus tree produced by BAli-Phy on all the
samples from our MCMCs (minus a “burn-in” of the 10 percents first sam-
ples) and P1-max.fasta is one of the summary alignment it should produce.
As explained earlier, we also tried to look at other consensus trees (but the
results were not better). We did not try other alignments because surpris-
ingly, this one was the only one BAli-Phy effectively produced. The option

7



-A serves to express that UPP should create only one HMM for the whole
backbone. By default, it would have splitted the backbone in two and created
two HMMs. The option -o only gives the prefix of the output file.

UPP can be found at

https://github.com/smirarab/sepp

The file README.UPP.md contains the detailed instructions on how to
install it and where to find SATé, which is required prior to installing UPP.

We aligned the backbones with SATé then we called UPP as above.
You should have already installed SATé if you correctly installed UPP.
We compared the alignments thanks to the software FastSP which can

be found at

http://www.cs.utexas.edu/˜phylo/software/fastsp/

The command to run was

java -jar FastSP 1.5.jar -r true.fasta -e upp 20 20 alignment.fasta

> upp 20 20 stats.txt

We constructed trees from alignments using FastTree and RAxML. To
run FastTree we used the command:

FastTree -nt -gtr < upp 20 20 alignment masked capitalized.fasta

> upp 20 20 fasttree.tree

UPP produces two alignments, a masked and an unmasked alignment.
As said earlier, FastTree produced way better trees by using the masked
alignment. Before calling FastTree, we had to make sure every lowercase u
in the alignment file was first replaced by a uppercase U because of some
bug in FastTree which prevent it from recognizing lowercase u. The option
-nt means nucleotides and the model we used was GTR. FastTree can be
downloaded from

http://www.microbesonline.org/fasttree/#Install

FastTree was very fast on the backbone sequences but took several hours
on the whole set of sequences aligned with UPP.

To run RAxML, we used the command:

8



raxmlHPC-PCTHREADS-SSE3 -m GTRCAT -T 8 -p 32585475

-s upp 20 20 alignment.fasta -n upp 20 20

We used a multi-threaded version of RAxML. The model was GTRCAT.
We ran 8 threads in parallel. The value given with the option -p is just a
random seed given by the user so that the result can be reproduced. The
option -s gives a suffix to all the files RAxML produces. This suffix must have
not been used for a previous call to RAxML. We kept the “RAxML bestTree”
output file.

RAxML took several GB of memory and more than 16 days (cumulative
cpu time) to compute a tree with 10,000 taxa. On the 20 taxa backbone, it
took 7 seconds.

The most recent version of RAxML can be obtained from

https://github.com/stamatak/standard-RAxML

To compute the tree error, we used a script of spruce which can be found
here:

http://www.cs.utexas.edu/ phylo/software/spruce/

We ran the following:

python getFpFn.py -t true.tt -e upp 20 20 fasttree.tree

> upp 20 20 fasttree stats.txt

References

[1] K Katoh, K Kuma, H Toh, and T Miyata. Mafft version 5: improve-
ment in accuracy of multiple sequence alignment. Nucl Acids Res,
33(2):511:518, 2005.

[2] Kevin Liu, Sindhu Raghavan, Serita Nelesen, C Randal Linder, and
Tandy Warnow. Rapid and accurate large-scale coestimation of se-
quence alignments and phylogenetic trees. Science (New York, N.Y.),
324(5934):1561–4, June 2009.

9



[3] Kevin Liu, Sindhu Raghavan, Serita Nelesen, C Randal Linder, and
Tandy Warnow. Supporting Online Material for Rapid and accurate
large-scale coestimation of sequence alignments and phylogenetic trees.
Science (New York, N.Y.), 324(5934):1561–4, June 2009.

[4] Siavash Mirarab, Nam Nguyen, and Tandy Warnow. PASTA : ultra-large
multiple sequence alignment. Submitted.

[5] Serita Nelesen, Kevin Liu, Li-San Wang, C Randal Linder, and Tandy
Warnow. DACTAL: divide-and-conquer trees (almost) without align-
ments. Bioinformatics (Oxford, England), 28:i274–82, 2012.

[6] Nam Nguyen, Siavash Mirarab, and Tandy Warnow. UPP: Ultra-large
alignment using SEPP. Article in preparation.

[7] Price, Dehal, and Arkin. Fasttree 2 approximately maximum-
likelihood trees for large alignments. PLoS ONE 5(3): e9490.
doi:10.1371/journal.pone.0009490, 2010.

[8] Benjamin D Redelings and Marc a Suchard. Joint Bayesian estimation of
alignment and phylogeny. Systematic biology, 54(3):401–18, June 2005.

[9] Alexandros Stamatakis. Raxml-vi-hpc: maximum likelihood-based phy-
logenetic analyses with thousands of taxa and mixed models. Bioinfor-
matics (2006) 22 (21): 2688-2690. doi: 10.1093/bioinformatics/btl446,
2006.

10


